
Simulation Methods

#devtools::load_all()
suppressPackageStartupMessages({

library(GEM)
library(ggplot2)
library(ggridges)
library(dplyr)
library(tidyr)
library(cowplot)
library(magrittr)

})

Run simulation

Simulation Model

The simulation study was designed to evaluate the performance of our proposed method for
analyzing aggregated binary outcomes. We generated data according to the following proce-
dure:

Data Generation Process

We simulated a dataset with 𝑛 = 10, 000 candidate mutations with 𝑝 = 10 features/covariates,
assigned to 𝑘 = 100 distinct samples/individuals. The data generation process follows these
steps:

1. Grouping Structure: Mutations were randomly assigned to 𝑘 = 100 individuals, with
each mutation having equal probability of assignment to any sample. Let 𝒮𝑗 represent
the set of indices of mutations belonging to the 𝑗-th sample, for 𝑗 ∈ {1, 2, … , 𝑘}.

1



2. Covariate Generation: We generated a covariate matrix X ∈ ℝ𝑛×𝑝 with each element
independently drawn from a standard normal distribution:

𝑋𝑖𝑗 ∼ 𝒩(0, 1) for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑝

3. Mutation Status: For each observation, a latent linear predictor 𝜂𝑖 was computed as:

𝜂𝑖 = X𝑇
𝑖 𝛽 + 𝛽0

where:

• X𝑖 is the vector of covariates for the 𝑖-th observation
• 𝛽 ∈ ℝ𝑝 is a vector of regression coefficients, with each element independently drawn

from 𝒩(0, 2)
• 𝛽0 = −0.8 is a fixed intercept term

Binary mutation statuses 𝑍𝑖 were then generated according to a Bernoulli distribution
with probability determined by the logistic function:

𝑍𝑖 ∼ Bernoulli(logit−1(𝜂𝑖)) for 𝑖 = 1, … , 𝑛

where logit−1(𝑥) = 1
1+𝑒−𝑥 is the inverse logit (or logistic) function.

4. Simulated age at blood draw: For each sample 𝑗, we computed the true count of
positive binary outcomes:

𝐶𝑗 = ∑
𝑖∈𝒮𝑗

𝑍𝑖 for 𝑗 = 1, … , 𝑘

The final response variable (simulated age at blood draw) 𝑌𝑗 for each aggregation unit
was generated as:

𝑌𝑗 = 60 + 10 ⋅ log2(𝐶𝑗) ⋅ 𝛽1 + 𝜖𝑗 for 𝑗 = 1, … , 𝑘

where:

• 𝛽1 = 1.0 is a fixed coefficient
• 𝜖𝑗 ∼ 𝒩(0, 5) represents random noise
• The logarithmic transformation log2(𝐶𝑗) models a non-linear relationship between

counts and the response

We then run this simulation 300 times and estimate the cordance with the “true” mutation
burden using both GEM and the naive mutation count/burden as estimators.

2



sims = GEM:::wrap_simulation(nsims = 300, .progress = FALSE)

sims %>%
rename(

`GEM` = cor_gem,
`Naive burden` = cor_burden

) %>%
tidyr::pivot_longer(cols = everything(), names_to = "type", values_to = "cor") %>%
ggplot(., aes(y = type, x = cor, fill = factor(stat(quantile)))) +

stat_density_ridges(
geom = "density_ridges_gradient",
calc_ecdf = TRUE,
quantiles = 4,
quantile_lines = TRUE

) +
scale_fill_viridis_d(name = "quartile") +
theme_cowplot(font_size = 12) +
theme(axis.title.y = element_blank()) +
labs(x = "Spearman correlation between\nestimated and true mutation count")

GEM

Naive burden

0.4 0.5 0.6 0.7 0.8 0.9
Spearman correlation between

estimated and true mutation count

quartile

1
2
3
4

summary(sims)
#> cor_gem cor_burden
#> Min. :0.3898 Min. :0.4326

3



#> 1st Qu.:0.6312 1st Qu.:0.5995
#> Median :0.6963 Median :0.6501
#> Mean :0.6797 Mean :0.6434
#> 3rd Qu.:0.7309 3rd Qu.:0.6884
#> Max. :0.8545 Max. :0.7971

4


	Run simulation
	Simulation Model
	Data Generation Process


